This is a standard duck tape holster with epoxy rim re-enforcement, silver duck tape on the outside, and aluminium tape around the rim. The rigid panel at the back (not visible from this angle) was made from some disposable chopsticks, and the velcro strap comes from some scavenged scraps. The tab that you see on the end of one of the velcro strips was made by folding the end over and gluing a short section of the velcro to itself.
If you want to copy this holster, you'll want to sand off the nub on the front of the bottom of your Apollo's trigger guard - this makes drawing and re-inserting the Apollo much easier. Also, the Apollo's upper tac rain has a slope on the back, and it's slightly easier to holster if the tac rail is turned around so that this slope is on the front. This piece is designed so that it can only go in one way around, presumably to prevent accidental backwards insertion during assembly, but it only takes a little bit of careful cutting to overcome this.
The holster was a quick and easy build and, overall, it turned out very well - which makes what happened when I turned my attention to the inside of the blaster all the more frustrating.
I tried to make this Apollo quieter by padding the plunger head. This is a piece of padding that is supposed to go under the feet of furniture, cut to shape with an Xacto knife after being stuck in place, and with the stray fibers at the edge burned away with a lighter. Subjectively, this seems to make the blaster a little bit quitter - but it's still darn loud. The thickness of the padding that I used is slightly less than the length of the four nubs that protrude from the front of the plunger head, so this allowed the plunger rod to travel slightly further. I didn't think that this was going to be a problem at the time, but this might have contributed to a gear breaking.
This air restrictor is a little odd. It seems to be designed to push the ball forwards by a small distance, where the barrel is just slightly narrower such that it seals around the ball. I don't think that this is a necessary for the blaster to fire - it only takes a very small waft of air to push the ball forwards and form a seal, so the ball will only leak a little air if it isn't pushed forwards before firing - but this might have a small impact on performance. Secondly, and perhaps more importantly, this air restrictor doesn't actually do much to restrict air. The plate at the back of the AR is full of holes and too small to completely cover the hole at the front of the plunger tube. Overall, I'm not sure what effect an AR removal has on an Apollo's performance, but I suspect that it improves things a little. I'll leave that for someone with access to a chronograph to test.
I removed the air restrictor, because otherwise the plate at the back of the AR would transmit the brunt of the now-flat plunger head's impact to the webbing that normally supports the AR, and I didn't want that webbing to break.
The extension spring on the trigger is easy to accidentally overextend - but it isn't a big problem if it is, as it can be replaced with an elastic band.
There are several locks under the priming bar of the Apollo. The rearmost of these prevents the blaster from starting to prime the blaster unless the plunger rod is in its foremost position. This lock looks like it might do a little to absorb some of the brunt of the impact of the plunger head. Carving down the middle tooth on the top of the lock may therefore be preferable to removing it entirely, and that's what I did.
The rack on the plunger rod that interfaces with the geartrain sits on a sled, that slides within the plunger rod. If the blaster is re-assembled with this sled in the wrong position, the blaster may be unable to prime (if it's not in contact with the geartrain), or unable to prime far enough to catch (if it's a little too far forwards) - or, worse, the blaster might end up in a situation where the geartrain takes the brunt of the impact of the plunger (if it's too far back). This is the biggest "gotcha" that I found inside the Apollo. I suspect that this could have been how I broke one of my Apollo's gears. The fact that the plunger rod could travel a little further forwards before being stopped by the front of the plunger tube could also have been a contributing factor.
After reassembling the blaster and test-firing it a few times, part of one of the teeth of the third gear from the back chipped off. Part of the tooth remained, with the result being that the gearbox would run smoothly while not under tension, but the gears would jam if under tension - meaning that it took a while to realize that a gear actually was broken!
There are a few lessons to be learned here:
- From a modder's perspective, blasters that prime using gears suck. (We knew this already.)
- If a blaster that primes using gears acts funny in some way that doesn't seem like a broken gear, it might mean that you have a chipped gear.
- Padding the plunger head of an Apollo doesn't help (much), and can cause other problems if the padding isn't thick enough.
- Take care to ensure that the sled with the rack inside an Apollo's plunger rod is properly positioned during reassembly. In particular, if it ends up too far back, the geartrain will take the brunt of the plunger's impact during firing. Keep in mind that the geartrain will be driven slightly when the piece with the priming handle is inserted into the gearbox. You might want to keep the left half of the gearbox's shell off, so that you can temporarily remove one of the gears - the gear with the flat top comes out easily - and manually adjust the position of the aforementioned sled after inserting the piece with the priming handle and before closing the gearbox.
No comments:
Post a Comment